Welcome to the Center for Disability Resources Library Blog! Here we will welcome your comments and suggestions about books and videos that you have borrowed, materials that you would like to see purchased, or anything involving the day-to-day operations of the library or even of disabilities in general. Visit the CDR Library's web site!
Monday, February 06, 2012
Encouraging Results With Stem Cell Transplant for Brain Injury
ScienceDaily (Feb. 1, 2012) — "Experiments in brain-injured rats show that stem cells injected via the carotid artery travel directly to the brain, where they greatly enhance functional recovery, reports a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
The carotid artery injection technique -- along with some form of in vivo optical imaging to track the stem cells after transplantation -- may be part of emerging approaches to stem cell transplantation for traumatic brain injury (TBI) in humans, according to the new research, led by Dr Toshiya Osanai of Hokkaido University Graduate School of Medicine, Sapporo, Japan.
Advanced Imaging Technology Lets Researchers Track Stem Cells
The researchers evaluated a new "intra-arterial" technique of stem cell transplantation in rats. Within seven days after induced TBI, stem cells created from the rats' bone marrow were injected into the carotid artery. The goal was to deliver the stem cells directly to the brain, without having them travel through the general circulation.
Before injection, the stem cells were labeled with "quantum dots" -- a biocompatible, fluorescent semiconductor created using nanotechnology. The quantum dots emit near-infrared light, with much longer wavelengths that penetrate bone and skin. This allowed the researchers to noninvasively monitor the stem cells for four weeks after transplantation.
Using this in vivo optical imaging technique, Dr Osanai and colleagues were able to see that the injected stem cells entered the brain on the "first pass," without entering the general circulation. Within three hours, the stem cells began to migrate from the smallest brain blood vessels (capillaries) into the area of brain injury."
NOTE: To read the entire article, click on the title above.
To access the Center for Disability Resources Library and its materials, please click this link
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment