Welcome to the Center for Disability Resources Library Blog! Here we will welcome your comments and suggestions about books and videos that you have borrowed, materials that you would like to see purchased, or anything involving the day-to-day operations of the library or even of disabilities in general. Visit the CDR Library's web site!
Thursday, April 21, 2011
Improved Recovery of Motor Function After Stroke
ScienceDaily (Apr. 19, 2011) — "After the acute treatment window closes, the only effective treatment for stroke is physical/occupational therapy. Now scientists from Children's Hospital Boston report a two-pronged molecular therapy that leads to significant recovery of skilled motor function in a rat model of stroke. Their findings are reported April 20 in the Journal of Neuroscience.
By combining two molecular therapies -- each known to promote some recovery on its own -- the researchers achieved more nerve growth and a greater recovery of motor function than with either treatment alone. One therapy, inosine, is a naturally-present molecule that promotes nerve growth; the other is NEP1-40, an agent that counteracts natural inhibitors of nerve growth.
"When you put these two together, you get much stronger growth of new circuits than either one alone, and very striking functional improvements," says senior author Larry Benowitz, PhD, of the Children's Department of Neurosurgery.
Strokes in humans often damage the motor cortex on one side of the brain, interfering with skilled motor functions on the opposite side of the body. Led by Laila Zai, PhD, a postdoctoral fellow in Benowitz's lab and the study's first author, the researchers modeled this scenario by inducing strokes on one side of the rats' brains -- specifically in a part of the motor cortex that controls forelimb movement. They then examined the rats' ability to perform a skilled reaching task -- retrieving food -- with the forelimb on the opposite side.
After 3 to 4 weeks, rats treated with both inosine and NEP1-40 could perform the task -- which required coordinated movements of the paw and digits -- with success rates equivalent to those before the stroke. Benowitz likens the complexity of this task to a person eating with utensils or operating a joystick."
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment