Neurons in green are over expressing a key gene that abnormally segregates them from other neurons (red and blue) within a developing column in the cerebral cortex. (Credit: Image courtesy of Yale University)
ScienceDaily (Sep. 17, 2009) — Yale University researchers have found a molecular mechanism that allows the proper mixing of neurons during the formation of columns essential for the operation of the cerebral cortex, they report in the Sept. 16 online issue of the journal Nature.
Scientists have known for years that information processing in the cerebral cortex depends upon groupings of neurons that assemble in the shape of vertical columns. If the number and mix of neurons in the column are wrong, severe cognitive problems can result. For instance, malformations of these columns have been implicated in some forms of autism and mental retardation. Scientists, however, have not been able to find the molecular mechanism responsible for this intermixing.
In the Nature paper, a team led by Pasko Rakic, professor and chairman of the Department of Neurobiology and head of the Kavli Institute for Neuroscience, describes one of the molecular mechanisms essential to the organizations of these key structures.
To view the entire article, please click on the link above.
Scientists have known for years that information processing in the cerebral cortex depends upon groupings of neurons that assemble in the shape of vertical columns. If the number and mix of neurons in the column are wrong, severe cognitive problems can result. For instance, malformations of these columns have been implicated in some forms of autism and mental retardation. Scientists, however, have not been able to find the molecular mechanism responsible for this intermixing.
In the Nature paper, a team led by Pasko Rakic, professor and chairman of the Department of Neurobiology and head of the Kavli Institute for Neuroscience, describes one of the molecular mechanisms essential to the organizations of these key structures.
To view the entire article, please click on the link above.
No comments:
Post a Comment